
bence.papp@uni-corvinus.hu

Empirical labour market analysis

Workshop material, 13th version

Issued: February 10, 2020

i

Content

Content .. i

Aim and review of the course ... ii

Exercise 1 – Getting started with STATA and basic statistics .. 1

Importing, editing and basic attributes of the current database ... 1

Labelling variables and values, saving... 3

Writing to the output, built-in functions .. 5

Generating and replacing new variables, conditioning and comparing ... 5

Query statistics, line fitting, regression, ANOVA ... 6

Appending and merging with other databases ... 8

Sorting and conditioning ...10

Writing do files (batch or script files)...11

Exercise 2 – Cross-sectional analysis of the labour market... 12

Labour Force Survey ...12

Generating age groups ..14

Indicator for employment, comparing with CSO’s version ...15

Indicator for unemployment, comparing with CSO’s version ...16

Indicator for activity and working age ...17

Weighing for inferring from the sample ..18

The basic rates: activity, employment, unemployment ...19

Visualizing our results ...20

Exercise 3 – Time series analysis of the labour market... 22

Creating new database holding results of calculations ..22

Writing cycles – the for loop ...23

Generating the time series ..24

Application 1 – Report generator for unemployment rate ... 27

Getting acquainted with the calculating do file ...27

The controlling and invoking VBA code ...27

Application 2 – Micro simulation .. 34

Formatting, describing and exploring the source databases ..34

Process the data, the core of the simulator ...36

ii

Aim and review of the course

The mission of this course is to give insight to basics of two main things. The first is measurement
of the labour market and the second is the analysis based on the data gained through the
measurement. Measurement means not only the proper gauge and scale but the knowledge and
the understanding of the subject of the measurement. As measurement covers more than its
name suggests so does analysis. Analysis comprises model application to the segment of reality
under examination, raising adequate questions, choosing suitable instrument — mathematical
or econometrical tools — and the correct interpretation of the results.

As economists are expected to master the skills and capacity of modelling, measurement,
analysis, estimation, interpretation, algorithmization and the usage of certain software so it is in
association with every profession who are up to scrupulously work on a field adjacent to
economics. Every attendee of this workshop seminar is going to get closer to fulfil this
requirement while acquiring the skills to handle a prominent and recognized software, STATA.

The essence and main landmarks of this course can be circumscribed with the element of the
table of contents of this document. It starts with making the students familiar with STATA while
collecting data via a survey and repeating some basic econometric tools in practice. Exercises
will be done on a variety of high quality databases of International Labour Organization, Eurostat
and European Social Survey. After the introductory part the course continues with an insight
into the Hungarian National Labour Force Survey and its usage for cross-sectional analysis of
the labour market. Beside cross-sectional analysis time series analysis shall not be abandoned.
For this reason was the third exercise composed. Ending the course of workshops there are two
applications which present the applicability of STATA for more complex tasks with respect to
labour issues.

Exercise 1 – Getting started with STATA and basic statistics

1

Exercise 1 – Getting started with STATA and basic statistics

We will collect data through a survey among the students of the group. Then we are going to format the
database, merge the actual database with the results of a former survey, and calculate basic statistics and get
to know the basics of graphical display.

Importing, editing and basic attributes of the current database

cd “S:\Empirical\WD” Sets the working directory (WD) of STATA to a certain
folder. Hereinafter there will be no need to give the
full path to STATA if you want to work with files within
this folder.

dir List the content of the working directory.

clear Clear the memory of STATA. All observations and
variables will be lost. But this command is crucial if
you want to load new dataset, because that could be
done only if there is nothing in the memory.

insheet using questionnaire.csv,

delim(“;”)

Importing data from comma separated value format
file. The option delim determines the value
separator (the character between cells) in the file
being imported to Stata. In the example a semi-colon.

help insheet Right at the beginning we must get to know how to
access the manual of Stata and its commands. Let us
have a look what kind of options does the insheet
command have.

insheet using questionnaire.csv,

clear

After comma you can state options for the
commands. In this case insheet has a clear
named option, which will clear memory before
importing.

save questionnaire.dta Save the data in Stata’s memory onto the hard drive
more specifically into the WD. The file will have Stata
format.

Exercise 1 – Getting started with STATA and basic statistics

2

use questionnaire.dta In advance let us know how to load data from a native
Stata data file into the memory. Type use and as the
parameter of the command give the name of the
Stata file.

set more off Setting the more parameter off, which means that
the output of a command shows up all at once in one
block and not divided into pages.

describe

describe name

Describing the dataset in the memory. Basic
information about variables and number of
observations.

d The short version of the command describe.
Almost every command has abbreviation. Let us look
into the help.

help describe

help

Opens the help of stata

d, short Displays only the attributes of the database.
Description of the variables is not included.

d, simple Only the variable names.

inspect hg

codebook hg

Summarized information about a variable and its
content. The two commands give similar output but
there are also differences between them. Try both
with the same numerical and string type variables!

list Listing the whole database. In case of many variables
and immense observations the output will not be
easily human-readable. What information do we
have here?

edit Opens the database in an independent new window.
Excel-like look and feel. You can copy data from Excel
directly into this table.

Exercise 1 – Getting started with STATA and basic statistics

3

Labelling variables and values, saving

label variable name “Full name” It gives the label “Full name” to the variable named
“name”.
Variable names are typically short and terse. Labels
are descriptive, informative. In commands you refer
to the variable with its name (not with the label).

Press the button PageUp and you can move backward
in the command history.

label variable neptun “Neptun code”

label variable sex “Gender”

label variable hg “Body height”

label variable pl “Palm length”

label variable pw “Palm width”

label variable by “Year of birth”

label variable bm “Month of birth”

label variable bd “Day of birth”

label variable paddr “Permanent

address”

label variable dist “Paddr distance

from Bp”

label variable hschool “Type of high

school”

label variable res “Residence while

learning”

label variable ttime “Travel time”

label variable wgroup “Workshop

group”

label variable program “Degree

course”

Giving label all of the variables.

You can copy the variable name from the variable
window if you click on it.

You can select the former (or any previous) command
also from the command history window by clicking
on one of them.

d

d p*

Exploring the new labels of the variables.

Exercise 1 – Getting started with STATA and basic statistics

4

d p? You can use wildcard characters (e.g. asterisk and
question mark).

tabulate hschool Frequency table on type of high school.

The categories are codes. We want to label the
categories in order to make them more informative.

label define l_sex 0 “male” 1

“female”

label define l_hschool 1 “grm.sch.”

2 “ec.sec.voc.sch.” 3

“oth.sec.voc.sch.” 4 “other”

label define l_res 1 “Pest” 2 “Buda”

3 “Pest county” 4 “Alföld(east)” 5

“Dunántúl(west)” 6 “Abroad”

Define a value label sets.

label values sex l_sex

label values hschool l_hschool

label values res l_res

Assign the value label sets to the proper variables.

tab hschool

tab sex

tab l_res

Now the categories are already labelled.

label dir

label list l_res

label list _all

labelbook l_res

labelbook

Information about value label sets.

save wgroup1, replace

dir

Saves the database in STATA format. Replace
means: overwrite existing file if necessary.

Dir reports that the new file came into being within
the WD.

Exercise 1 – Getting started with STATA and basic statistics

5

label drop l_sex Deleting a value label set (l_sex). It is inevitable in
case you want to edit or rewrite a label set. Stata lets
you modify a set only in a complicated way; it is easier
to drop (erase) the old one and create a new one.

Writing to the output, built-in functions

display “Hello” Displays a string on the output window.

di 3 Displays a number.

di 3+8

di sin(2*_pi)

Calculates the operation and displays the result.

di “3+8”

di “sin(2*_pi)”

Displays the operation as a string.

di mdy(9,1,2019)

di mdy(1,1,1960)

di mdy(12,30,1959)

mdy returns with the number of days since 1 January
1960 until day given as argument.

The result, obviously, could be negative as well.

Generating and replacing new variables, conditioning and comparing

generate new_var = 0

generate byte new_var2 = 0

generate float new_var3 = 0.0

Generates a new variable and initializes it with the
value 0. Initialization is compulsory!

Optionally you can prescribe the type of variable.

gen birth_date = mdy(bm,bd,by)

label var birth_date “Date of birth”

Generates a new variable for every observation and
sets its initial value to the complete birth date formed
from the month, day and year.

list birth_date Lists the variables given in the argument list for all
observations.

Exercise 1 – Getting started with STATA and basic statistics

6

format birth_date %d

format birth_date %dM.D,CY

format birth_date %dCY-M-D

list birth_date

Change the display format of the birth_date variable
to date format. First UK style.

Then USA style.

Lastly Hungarian style.

gen s_age_2019 = 2019-by Generates simple age proxy of every observation’s
age in 2019.

gen age_2019 = s_age_2019

replace age_2019 = s_age_2019-1 if

mdy(bm,bd,2019) > mdy(9,1,2019)

Generates precise age derived from the age proxy.

Decrement age_2019 by one if the person’s birthday
is not over on the current day.

replace is for replacing the values of an existing
variable. You cannot do this with generate.

generate is for generating non-existing variables. If
you insist using generate you should delete the
variable first with the drop command.

if clause is for conditioning a command. Here the
replace command. It stipulates that replacement
should be carried out only if the observation’s
birthday is not over on the current day.

compare s_age_2019 age_2019 Compares two variables for every observation.

save wgroup1, replace Saving for safety reasons.

Query statistics, line fitting, regression, ANOVA

summarize hg

summarize hg, detail

Getting basic statistics about the body height. With
the detail option we can request more profound
statistics.

_pctile hg, n(100)

di r(r34)

Quantiles more profoundly. The first command
calculates quantiles with the cardinality given by the
n() option (this case 100, so the quantiles will be
percentiles). The second command displays one of
the results stored in the r vector (results’ vector)
— in this case the 34th percentile.

Exercise 1 – Getting started with STATA and basic statistics

7

tabulate sex Plain frequency table.

tabulate sex, sum(hg) Summary statistics about body height broken down
by gender.

tabulate res sex

tab res sex, row

tab res sex, row nofreq

tab res sex, col

tab res sex, cell

Two-way cross table (contingency table). The first
variable gives the values for the vertical axis and the
second variable gives the values for the horizontal
axis.

Adds row relative frequencies.

Row relative frequencies without absolute
frequencies.

Add column relative frequencies.

Add cell relative frequencies.

tab res sex, sum(ttime) Combination of contingency table and summary
statistics.

histogram hg

histogram hg, bin(3)

histogram hg, bin(3)

xlabel(150(20)210)

Calculates and display histogram over height.

Histogram with forced number of intervals.

Formatting the y-axis scale labels.

gen palmsur = pl*pw Generate the surface of palm for everyone.

reg palmsur hg sex Make regression for palm’s surface with height and
sex dummy.

Note the R squared parameter.

gen hg_sq = hg^2 Generate the square of body height.

reg palmsur hg_sq sex Now make the regression again but this time with the
square of the height.

R squared is better, the model fits better.

Exercise 1 – Getting started with STATA and basic statistics

8

graph twoway (lfit palmsur hg)

(scatter palmsur hg), name(g1)

graph twoway (qfit palmsur hg_sq)

(scatter palmsur hg_sq), name(g2)

Visualizing the formerly revealed relationship.

Linear and quadratic fitting.

graph dir List all graphs which are in the memory.

graph display g1

graph display g2

Displaying certain graph.

graph drop g1 g2 Deleting graphs.

one hg sex, tab One-way ANOVA on height by sex.

According to F statistics there is significant difference
in height by gender.

Appending and merging with other databases

describe using wgroup2 Describe database which is not in the memory. Let us
memorize the number of observations.

d Counting the number of observations in the actual
database. Note it.

append using wgroup2 Append new database to the memory.

d Count the number of observation in the resultant
database. It must be the sum of the former two
numbers.

tab neptun Tabulate by Neptun code. This code is unique, and
there is two observations with the same code.

Exercise 1 – Getting started with STATA and basic statistics

9

list name neptun wgroup if neptun ==

“IRYX2F”

It may be the teacher who is twice among the
observations. Listing with restriction to a certain
neptun code. Neptun code is a string so you have to
put it between double quotation marks.

use wgroup1, clear Load in the data of our group again.

merge 1:1 neptun using wgroup2 Merge the database in the memory (master) with the
database currently loaded (using) by the variable
named neptun.

list name neptun wgroup if name ==

“Papp Bence”

Now there is only one person to one Neptun code.

tab _merge A new variable named _merge has been generated. It
informs us about the observations’ former location.

If you want to process new merging it will be
unsuccessful until you delete or rename this variable,
because every merge wants to generate new
_merge and it cannot be done unless the former is
vanished.

rename _merge location Give a more apt name to _merge.

list name location Who was in the master, who was in the using
database and who was in both?

list name wgroup The . (dot) values means missing observation.
Infelicitously it also means infinite. As a
consequence you have to be aware of this when
forming conditions in an if clause.

Let us replace one’s body height with . , and then list
the names of those who are taller than 170 cm.

list name if wgroup == .

list name if mi(wgroup)

Filter out the missing observations.

Either with the . value or with built-in function.

Exercise 1 – Getting started with STATA and basic statistics

10

label data “Data of two students’

groups (year of 2020 and 2019)”

Adds caption to the database.

save wrgoups, replace

Sorting and conditioning

list name hg

sort hg

list name hg

Examine the effect of the sort command.

It produces an ascending order.

gsort hg

gsort -hg

Ascending and descending ordering. Nota bene the
usage of the minus sign.

list name hg in 1/5 The first 5 (tallest) member of the group.

list name hg in -3/L The last 3 (shortest) member of the group.

list name if ttime < 10 & hschool ==

1 & (res == 1 | res == 2)

List the names of members who travel less than 10
minutes to the university and who attended grammar
school and who live during education either in Pest or
Buda.

Logical relations (operators):

AND - &
OR - |
NOT - !
EQUAL - ==
(nota bene: double equal sign is for equality
checking, single equal sign is for assignment!)
NOT EQUAL - !=
GREATER THAN OR EQUAL - >=
LESS THAN OR EQUAL - <=

sum hg if sex == 1

sum hg if sex == 0

What are the average heights of females and males?

Exercise 1 – Getting started with STATA and basic statistics

11

Writing do files (batch or script files)

doedit Open the do editor in a new window. We will work
here with finishing the do file.

* Single line comment type 1

// Single line comment type 2

/* Comment line 1

Comment line 2 */

You can add comment to the do file. These lines will
not be executed. They are mainly for documentation.

clear

cd “S:\Empirical\WD”

use wgroups

Initial commands of the do file.

log using log2019.log, replace text Open log file to write the following results into it.

tab sex

sum hg ttime

Make computations.

log close Closing the log file.

Save the do file with the name of “practice_01.do”.

do practice_01.do Revert to the command window and type the do
command with the filename of our do file. It will
execute it.

Check out the log file in the WD.

Exercise 2 – Cross-sectional analysis of the labour market

12

Exercise 2 – Cross-sectional analysis of the labour market

Using the Hungarian Labour Force Survey we will have a brief insight to the results of comprehensive data
acquisition and catch a glimpse of its method. We will generate the basic and most important indicators and
categories for analysis.

Labour Force Survey

use LFS(66th wave).dta Open the 66th wave of the Hungarian LFS. Wave
means a quarter, and the first quarter was 1992Q1.
Let us calculate and then check which year and which
quarter do we have at hand!

d county area hid person

d county-person

Let us peruse the database!

Start with the first four variables. We can do it in the
way we have already learnt, or with the hyphen
operator (-) which is for setting a range of
consecutive variables.

In this example the second describe command has
every variable from county to person as parameters.

The range operator (hyphen) could be used for other
command as well (e.g tabulate or summarize).

d, s

count

cou if kor>14 & kor<75

cou if kor>74

cou if kor<15

How many people are in the sample?

The count command is also good for counting every
observation, and more …

We can use count with conditions.

list hid person in 1/20 Let us have a deeper look into the database.

hid uniquely identifies households and person the
individuals within.

codebook hid person There is no missing observation for household
identifier and person number.

Exercise 2 – Cross-sectional analysis of the labour market

13

sort hid person

gen myid = 1000000 + _n

In association with the household identifier one could
be curious about how to generate a series of unique
numbers.

Sort data firstly by household identifier and secondly
by person number within the household.

We can use special variable _n that holds the row
number in which the observation under calculation
can be found.

Generating unique identifiers starting from 1000000
for each observation.

replace myid = 1 in 13

replace myid = wei[13] in 12

If we are talking about generating by row numbers,
here is how to access variable values by row number.
Using the square brackets or the in qualifier
are the tools for this task.

Taking the second replace command we address

the 12th value of myid and replace it with the 13th

value of wei.

tab w1hour

tab absent_c

tab mionem

tab search_b

tab avail

And there are the key variables which make us able
to identify the labour market statuses.

Who worked at least 1 hour in the previous week?
The question is set only to people in working age.

d weight Weight variable to be able to estimate for the
population from the sample.

d educ_d educH

tab educ_d educH

d absent_c absentH

tab absent_c absentH

Harmonized variables to ease comparison between
countries.

tab1 hcitiz magyar allev

tab Magyar, missing

tab allev, missing

Let us check the data concerning the citizenship of
the observed person.

tab1 makes tables according to each variable in its
argument respectively.

Exercise 2 – Cross-sectional analysis of the labour market

14

There could be missing observations because of the
jump in the questionnaire.

The missing option make tab count also the
missing values and put into the table.

Use the display command as a calculator to check
whether the values add up the entire dataset.

Generating age groups

// Age group generator do file. Start a do file with this header.

gen agegroup = 0 Generate a polychotomous variable for coding the
age groups.

replace agegroup = 1 if age > 14

replace agegroup = 2 if age > 19

replace agegroup = 3 if age > 24

replace agegroup = 4 if age > 29

replace agegroup = 5 if age > 39

replace agegroup = 6 if age > 49

replace agegroup = 7 if age > 59

replace agegroup = 8 if age > 69

replace agegroup = 9 if age > 74

The group number 1 gathers everybody who is older
than 14 years and younger than 20.

The group number 0 consists of the people who are
younger than 15.

Everybody who is elder than 74 are convened into the
group number 9.

label var agegroup "Age groups"

label define l_agegr 0 "0-14" 1 "15-

19" 2 "20-24" 3 "25-29" 4 "30-39" 5

"40-49" 6 "50-59" 7 "60-69" 8 "70-

74" 9 "75 or more"

label values agegroup l_agegr

Labelling the age group coding variable.

// End of do file Save and close the do file.

Exercise 2 – Cross-sectional analysis of the labour market

15

gen agegroup2 =

recode(age,14,19,24,29,39,49,59,69,

74,75)

The easier way for the same task with the help of a
built-in function. As the arguments of recode you
have to give the variable which you want to stratify
and the upper limit of the nascent groups.

tab1 agegr* Review the two categorizations.

Indicator for employment, comparing with CSO’s version

gen employed=0 if kor>14 & kor<75 Generate a new variable but only if the person’s age
is greater than 14 and less than 75 (he or she is in the
working age group). Older and younger people will
get a missing value (. — the dot).

This variable will code whether a person is employed
or not.

replace employed=1 if w1hour==1 |

absent_c == 1

Replace the employed named variable with 1 if the
person has worked at least 1 hour in the last week or
was temporarily away from his or her job.

label var employed “Employed or not

employed – YES/NO dichotomous

variable”

Give a proper label for our new variable.

label dir

label list yn yesno

Looking for value label set.

label values employed yn “yn” will do perfectly.

tab employed Check out what have we done.

compare employed csoe1 Compares our employed variable with the one which
was generated by the CSO (Central Statistical Office).

There is a slight difference: there are few people who
are employed according to our indicator and not by
the official. Let us find out the reason!

Exercise 2 – Cross-sectional analysis of the labour market

16

list mionem employed csoe1 if

employed>csoe1

The variable mionem informs us about whether the
person are away from her/his work more than 3
month and gets at least the half of her/his salary or
not.

If not than the person cannot be classified into the
employed class. It is true for every 8 person in
question. Let us modify our variable!

d mionem

label list mionemen

Query the label value set’s name belonging to
mionem. Then find out the value which belongs to
“away more than 3 month and gets less than half of
salary”. We have to have it because if conditions can
be composed only with values (not with labels).

tab mionem, nolab Alternative way for revealing the values behind the
labels. Tabulates without labels.

numlabel mionemen, add

tab mionem

numlabel mionemen, remove

tab mionem

Other solution for disclosing the numbers assigned to
the value labels.

You can add and remove the values from the labels.

replace employed = 0 if mionem == 3 The needed modification.

compare employed csoe1 The comparison reports that there is no more
divergence.

Indicator for unemployment, comparing with CSO’s version

tab1 search_b meth* avail Tabulate the key variables for defining the state of
unemployment.

To be unemployed one shall not be occupied (I.), shall
seek job (II.) and shall be able to take the job (III.). If
someone does not seek job but has already found a
job and will begin in short time the II. condition does
not bound.

Not every search method counts as accepted
method.

Exercise 2 – Cross-sectional analysis of the labour market

17

gen unemployed = 0 if kor>14 &

kor<75

replace unemployed = 1 if (search_b

== 1 | search_b == 2) & avail == 1

Generate our unemployed variable for the working
age class.

Replace it according to the rule above.

compare unemployed csou Comparing with the CSO’s version. There is again a
minuscule divergence. There are some unemployed
according to our computation who are not
considered as unemployed by the CSO. Let us search
for the roots again!

drop unemployed

gen unemployed = 0 if kor>14 &

kor<75

replace unemployed = 1 if (

(search_b == 1 & (metha == 1 |

methb == 1 | methc ==1 | methd ==1 |

methe ==1 | methf ==1 | methi ==1 |

methj ==1 | methk ==1 | methm == 1

)) | search_b == 2) & avail == 1

Recreate the unemployed variable, but now we will
filter out certain search methods (g, h and l).

compare unemployed csou Comparison for checking our compliance.

label var unemployed “Unemployed or

not unemployed – YES/NO dichotomous

variable”

label values unemployed yn

Labelling our new variable.

gen UE = 0 if employed == 1 |

unemployed == 1

replace UE = 1 if unemployed == 1

label var UE “Unemployed - defined

over actives”

label values UE yn

Generate a second version of unemployed called UE
which will fit better for calculating the
unemployment rate.

The relevant difference between unemployed and UE
is that the former is defined over active aged and the
latter is defined over actives.

Indicator for activity and working age

gen active = 0 if kor>14 & kor<75 Generating binomial variable for actives.

Exercise 2 – Cross-sectional analysis of the labour market

18

replace active = 1 if employed == 1

| unemployed == 1

label var active “Active or not

active – YES/NO dichotomous

variable”

label values active yn

gen workage = 0

replace workage = 1 if kor>14 &

kor<75

label var workage “Working age? –

YES/NO dichotomous variable”

label values workage yn

Generating binomial variable for working age.

save “LFS66_processed”, replace Saving our work.

Weighing for inferring from the sample

d weight

codebook weight

The weight variable. Every observation has a weigh
meaning how many other people she or he
represents in the population (Hungary).

tab1 employed unemployed active

workage

The labour market statuses and their numbers for our
sample.

tab1 employed unemployed active

workage [weight = weight]

The labour market statuses and their numbers’
estimate for the population.

An error message appears: we shall use integer
weights.

gen rweight=round(weight,1) Generate a rounded weight derived from the original
weight variable.

tab1 employed unemployed active

workage [weight = rweight]

Now it works!

Exercise 2 – Cross-sectional analysis of the labour market

19

tab county [w=rw]

tab sex [w=rw]

tab educH [w=rw]

tab agegroup [w=rw]

tab agegroup sex [w=rw], nofr row

tab employed sex [w=rw]

Examine our labour market from different aspect
with descriptive statistics.

The basic rates: activity, employment, unemployment

sum active [w=weight] The activity (participation) rate: the share of actives
among working aged.

The mean of this variable adds up the activity rate
because it was defined over the group of active aged
people (everybody else has missing value for this
variable) and who is active has one and who is not
active got zero.

Note that the command summarize does not
prerequire integer weights!

sum employed [w=wei] The employment rate: the proportion of employed
among the working aged.

sum UE [w=wei] The unemployment rate: the number of unemployed
divided by the number of actives.

Nota bene, we intendedly defined UE (in contrast to
the variable unemployed) on the basis of active
people (and not on the domain of active age people).

sum unemployed [w=wei]

sum workage [w=wei]

The mean of unemployed adds the share of
unemployed people among working age population.

The mean of workage adds the proportion of the
entire population who are in working age.

tab educH [w=wei], sum(UE) Calculate the unemployment rate broken down by
educational achievements.

Exercise 2 – Cross-sectional analysis of the labour market

20

tab educH [w=wei], sum(UE) nost nofr

noobs

The same but without the standard deviation, the
frequencies and the observations.

tab educH, sum(UE) nost nofr noobs The same without weighing. What is the reason of the
difference? Somehow certain people are
overrepresented in the sample.

Do the same comparison for employed: the
weighted and unweighted frequencies!

tab sex [w=wei], sum(UE) nost nofr

noobs

tab agegroup [w=wei], sum(UE) nost

nofr noobs

tab county [w=wei], sum(UE) nost

nofr noobs

The unemployment rate grouped by the main
stratifying variables.

tab educH sex [w=wei], sum(UE) nost

nofr noobs

tab educH sex [w=wei], sum(employed)

nost nofr noobs

tab educH sex [w=wei], sum(active)

nost nofr noobs

The main rates in contingency tables.

tabstat active employed UE [w=wei],

s(mean) by(educH)

All important rates in one table by educational
attainment.

Visualizing our results

graph hbar employed [w=wei],

over(county)

A bar chart with the mean of the given variable
(employed) grouped by counties.

graph hbar employed [w=wei],

over(county, sort(1))

Sorting the bars according to their length in ascending
order.

graph hbar employed [w=wei],

over(county, sort((mean) UE))

Ordering by the unemployment rate of the counties.

Exercise 2 – Cross-sectional analysis of the labour market

21

graph hbar employed [w=wei],

over(county, sort((mean) UE) des)

Ordering by the unemployment rate of the counties
in descending order.

graph bar UE [w=wei], over(agegroup,

label(angle(vertical))) over(sex)

nofill

Draw bars for unemployment rate by age groups and
gender.

Without nofill the empty categories would be
displayed as well.

Without the label option the labels would be
displayed horizontally and will overlap each other.

graph bar UE [w=wei], over(agegroup,

label(angle(vertical))) over(sex,

relabel(0 "na" 1 "male" 2 "female"))

nofill

Add new labels for genders omitting the value from
it. Shows off better.

graph bar UE [w=wei], over(agegroup,

label(angle(vertical))) over(sex,

relabel(0 "na" 1 "male" 2 "female"))

nofill ylabel(0(0.02)0.1

0.1(0.1)0.4, angle(horizontal)

labsize(small)) ytitle("Unemployment

rate")

Set the labels for the y axis so as to compare easier
the shorter bars.

Add a more correct title for the value axis.

Exercise 3 – Time series analysis of the labour market

22

Exercise 3 – Time series analysis of the labour market

Continuing the analysis of the Hungarian labour market through the LFS we turn to another aspect namely the
dynamic of phenomena. Using the concept of the main indicators learned in the previous section we will
assemble time series reporting of the changes of labour market.

Creating new database holding results of calculations

use LFS66_processed, clear Open the previously saved database.

graph bar employed UE active,

over(agegroup,

label(angle(vertical))) over(sex,

relabel(0 "na" 1 "male" 2 "female"))

nofill ylabel(#6,angle(horizontal)

labsize(small)) ytitle("Basic

indicators") legend(label(1

"Employment rate") label(2

"Uemployment rate") label(3

"Activity rate")) title("Hungary's

Labour Market 2008 2nd quarter")

Just for revision have a look at the main indicators.

collapse UE It makes a new database with only one variable and
with only one observation which is a statistic (mean
by default) of the given parameter (UE).

list See what we have gotten.

use LFS66_processed, clear Load our source database again.

collapse (count) UE Let us count the number of defined (non-missing)
observations for UE and make a new table for it.

collapse (mean) UEr=UE ACr=active

(rawsum) NR=wei if workage==1

[w=wei]

Put unemployment rate and activity rate with new
variable names UEr and ACr into a new table and in
addition write as the third variable, named NR, the
estimated number of people in working age.

rawsum ignores the weight variable.

Exercise 3 – Time series analysis of the labour market

23

collapse (mean) UEr=UE ACr=active

Er=employed (count) CUE=UE

CAC=active CE=employed (rawsum)

NR=wei if workage==1 [w=wei], by(sex

educH)

Extend the previous table with the number of non-
missing observation in the sample and break down
firstly by gender and secondly by educational
attainment.

sum NR

di r(sum)

Check whether the sum of NR adds up the total
number of people in working age.

After calling the summarize command STATA
stores the sum of all observation’s value belonging to
the variable in the r system matrix under the row
named sum.

Writing cycles – the for loop

// Do file for basic cycles

foreach i of numlist 1 2 5 43 {

di `i’

}

// End of do file

Open the do editor and write the for loop into it.
Execution advisably should be carried out from the do
editor.

The statement starts with the word foreach.

Then the name of the cycle variable shall be given.

It is followed by the key word of.

That follows the declaration of what kind of list do we
want to put the element on which the loop will have
to go through on. Numlist is a list consisting of

numbers.

Then we define the list’s elements.

The trunk of the loop starts with an opening curly
bracket.

The content of the trunk could be any of STATA’s
command in any number.

The loop ends with a closing curly bracket.

To refer to the actual content of the cycle variable you
have to put the name of the cycle variable between a
special brackets (open with ` (AltGr+7) and close with
‘ (Shift+1)).

foreach i of numlist 6/12 { Other types of number list’s element definition.

Exercise 3 – Time series analysis of the labour market

24

di `i’

}

foreach i of numlist 1(2)11 {

di `i’

}

foreach i of varlist UE active

employed {

di “The mean of `i’“

quietly sum `i’ [w=wei]

di r(mean)

}

A for loop for skimming through a list of variables.

A variable list is declared by the word varlist.

With quietly we suppress the terminal output of

summarize and then query only the mean from the
results.

Generating the time series

// Time series generator do file Open the do editor and start a do file.

set more off Turn out paging — do not bother ourselves with
clicking next after every page in the output window.

foreach i of numlist 1(4)85 {

use alfs`i'_comp, clear

The cycle will go through LFS-s as from 1992q1 until
2013q1.

gen byte active=0 if korH>14 &

korH<75

replace active=1 if csoe1==1 |

csou==1

gen byte UE=0 if active==1

replace UE=1 if csou==1

gen byte m_act = active if sex == 1

gen byte f_act = active if sex == 2

gen byte m_emp = csoe1 if sex == 1

Generating the main labour market state indicators
for every quarter.

Exercise 3 – Time series analysis of the labour market

25

gen byte f_emp = csoe1 if sex == 2

gen byte m_ue = UE if sex == 1

gen byte f_ue = UE if sex == 2

collapse active csoe1 UE m_act-f_ue

[w=weight]

Make a new table with the rates.

global date = 1992+(`i'-1)/4

gen str6 date = "$date" + "q1"

order date, before(active)

Jot down the current year/quarter.

Put the date variable in front of the columns.

if `i' > 1 append using Main_rates

save Main_rates, replace

}

If it is not the first year then append the data of the
former year to it.

Update the output table anyway.

sort date

gen x=_n

Sorting the table by date.

Generating serial numbers — preparing for plotting.

global xlabel1 = ""

foreach i of numlist 1/10 {

local year = `i'+1991

global xlabel1 = `" $xlabel1 `i'

"`year'q1" "'

}

global xlabel2 = ""

foreach i of numlist 11/22 {

local year = `i'+1991

global xlabel2 = `" $xlabel2 `i'

"`year'q1" "'

}

Define two macros (xlabel1 and xlabel2) for holding
the time labels for the graph.

Two is required because one could not hold so long
text we need.

Exercise 3 – Time series analysis of the labour market

26

twoway (bar UE x, fcolor("200 200

200") ylabel(0(0.02)0.14)

barwidth(0.5)) (line f_ue x, lw(1))

(line m_ue x, lw(1)) ,

legend(label(1 "Overall ue rate")

label(2 "Women ue rate") label(3

"Men ue rate")) xlabel($xlabel1

$xlabel2, angle(vertical))

xtitle("") ytitle("Unemployment

rates")

Plotting the overall unemployment rate and minor
rates by gender.

Application 1 – Report generator for unemployment rate

27

Application 1 – Report generator for unemployment rate

STATA could be used from other application (e.g. MS Word) as an object. It makes us room to connect to STATA
from another program (e.g. VBA) without having to open it. Windows mediate between the programs; but of
course it has to know about the object — you have to register STATA (execute STATA with parameter:
"SataSE.exe /Regserver" or "SataSE.exe /Register"). We will write a terse but pithy VBA code which uses STATA
to calculate unemployment rate from LFS and its change from year to year and incorporate these data into a
report.

Getting acquainted with the calculating do file

use lfs$sDate.dta, clear Open an LFS survey which belongs to the
year/quarter given by the global macro called sDate
(starting date).

sDate is set by the calling application, in our case the
VBA code from MS Word (it will be discussed in the
next section).

gen active = 1 if csou == 1 | csoe

== 1

Generate the binomial variable for actives.

sum csou if active == 1 [w=weight] Calculate the unemployment rate.

scalar ue1 = r(mean) Save the unemployment rate into the storage named
ue1.

use lfs$eDate.dta, clear

gen active = 1 if csou == 1 | csoe

== 1

sum csou if active == 1 [w=weight]

scalar ue2 = r(mean)

Do the very same with the other year’s (per quarter
of course) LFS. The global macro for that is eDate
(ending date).

Store the respective unemployment rate into ue2.

The controlling and invoking VBA code

Sub STATA() Start a subroutine in MS Word.

Application 1 – Report generator for unemployment rate

28

Dim startingDate As String:

startingDate = "2008q2"

Declare a new string with the content regarding the
starting date of the analysis.

Dim endingDate As String: endingDate

= "2009q2"

Declare a new string with the content regarding the
ending date of the analysis.

Dim WDpath As String: WDpath =

"""g:\ENG\Teaching

materials\Automatic_Unemp_Report\"""

String for the WD of STATA.

Dim stataobj

Set stataobj =

CreateObject("stata.StataOLEApp")

Declare a new object and set it to STATA as an object.

Simple speaking from here on stataobj will represent
STATA.

Dim return_code As Integer Storage for the return code of different functions. If
there will be problems during executions it could help
us debugging.

Selection.WholeStory

Selection.Delete

For i = 1 To 30

ActiveDocument.Paragraphs.Add

Next i

Put 30 paragraphs into a bank new Word document.
Later we are going to edit them.

With ActiveDocument.Paragraphs(1)

.Range.Text = "Report on

Unemployment"

.LineSpacing = 24

.Alignment = wdAlignParagraphCenter

.Range.Font.Bold = True

.Range.Font.Size = 24

End With

Edit and format the title.

Application 1 – Report generator for unemployment rate

29

With ActiveDocument.Paragraphs(2)

.Range.Text = "Change from " +

startingDate + " to " + endingDate

.LineSpacing = 12

.Alignment = wdAlignParagraphCenter

.Range.Font.Bold = False

.Range.Font.Italic = True

.Range.Font.Size = 16

End With

Edit and format the content about the time horizon
of the analysis.

With ActiveDocument.Paragraphs(3)

.Range.Text = "Made by Kiss Pista"

.LineSpacing = 12

.Alignment = wdAlignParagraphCenter

.Range.Font.Bold = False

.Range.Font.Italic = True

.Range.Font.Size = 16

End With

Edit the author’s paragraph.

With ActiveDocument.Paragraphs(4)

.Range.Text = "Date of creation: " &

Format(Now, "dd.mm.yyyy")

.LineSpacing = 50

.Alignment = wdAlignParagraphCenter

.Range.Font.Bold = False

.Range.Font.Italic = True

.Range.Font.Size = 16

End With

Edit the information about the date of reporting.

Application 1 – Report generator for unemployment rate

30

return_code = stataobj.DoCommand("cd

" + WDpath)

If return_code <> 0 Then

MsgBox "Error while setting WD."

Exit Sub

End If

Command STATA to change its WD to the predefined
WD.

If the return code is not zero, then a problem
occurred. A dialog box will show up to inform us and
then terminate the execution of the subroutine.

return_code =

stataobj.DoCommand("global sDate = "

+ """" + startingDate + """")

If return_code <> 0 Then

MsgBox "Error while setting starting

date macro."

Exit Sub

End If

Setting the starting date macro for STATA. Recall that
it is used in the before-mentioned do file.

return_code =

stataobj.DoCommand("global eDate = "

+ """" + endingDate + """")

If return_code <> 0 Then

MsgBox "Error while setting ending

date macro."

Exit Sub

End If

Setting the ending date macro for STATA. Recall that
it was the other important message to be passed to
STATA.

return_code = stataobj.DoCommand("do

calculations.do")

If return_code <> 0 Then

MsgBox "Error while executing do

file."

Exit Sub

End If

Execute the calculating do file.

Application 1 – Report generator for unemployment rate

31

Dim ue1 As Double

ue1 = stataobj.ScalarNumeric("ue1")

* 100

Get the unemployment rate for the first analysed
quarter. Transform it to percentage.

Dim ue2 As Double

ue2 = stataobj.ScalarNumeric("ue2")

* 100

Get the unemployment rate for the second analysed
quarter. We transform it also to percentage.

Dim rText(7) As String Declare an array of strings to make it hold different
report text alternatives to make our work more
variegated.

Dim rTextNumber As Integer Declare an integer to store the chosen number of text
in the text array.

rText(1) = "I am very sorry to

announce that the unemployment rate

increased. The increment is " &

Format(ue2 - ue1, "#0.0") & "

percentage point (from " &

Format(ue1, "#0.00") & " to " &

Format(ue2, "#0.00") & ")."

rText(2) = "I regret reporting that

the unemployment rate increased. The

increment is " & Format(ue2 - ue1,

"#0.0") & " percentage point (from "

& Format(ue1, "#0.00") & " to " &

Format(ue2, "#0.00") & ")."

rText(3) = "It is to be pitied that

the unemployment rate increased. The

increment is " & Format(ue2 - ue1,

"#0.0") & " percentage point (from "

& Format(ue1, "#0.00") & " to " &

Format(ue2, "#0.00") & ")."

rText(4) = "It is to the great

delight of me to report that the

unemployment rate fell. The

decrement is " & Format(ue1 - ue2,

"#0.0") & " percentage point (from "

& Format(ue1, "#0.00") & " to " &

Format(ue2, "#0.00") & ")."

rText(5) = "I am pleased to jot down

that the unemployment rate fell. The

Fill the array with texts.

The first three is for the bad news which means that
the unemployment rate lifted.

The next three is for good news which means quite
the contrary in terms of unemployment rate.

The seventh is a neutral message for neutral situation
(no change in unemployment rate).

All of them embeds the rates acquired from STATA.

Application 1 – Report generator for unemployment rate

32

decrement is " & Format(ue1 - ue2,

"#0.0") & " percentage point (from "

& Format(ue1, "#0.00") & " to " &

Format(ue2, "#0.00") & ")."

rText(6) = "I am happy to assert

that the unemployment rate fell. The

decrement is " & Format(ue1 - ue2,

"#0.0") & " percentage point (from "

& Format(ue1, "#0.00") & " to " &

Format(ue2, "#0.00") & ")."

rText(7) = "Nothing changed in

association with unemployment rate.

It is and it was " + Format(ue1,

"#0.0") + " percentage point."

If ue2 > ue1 Then

 Randomize

 rTextNumber = Int(3 * Rnd) + 1

ElseIf ue2 < ue1 Then

 Randomize

 rTextNumber = Int(3 * Rnd) + 4

Else

 rTextNumber = 7

End If

According to the fact whether the unemployment
rate increased or decreased or did not changed we
randomly chose a text from the string array.

With ActiveDocument.Paragraphs(5)

.Range.Text = rText(rTextNumber)

.LineSpacing = 12

.Alignment = wdAlignParagraphLeft

.Range.Font.Bold = False

.Range.Font.Italic = False

.Range.Font.Size = 12

End With

In the last edited paragraph we insert the chosen text
with the results of the calculation.

Application 1 – Report generator for unemployment rate

33

Set stataobj = Nothing After finishing our work we have to terminate the
object and free memory.

End Sub The end of the subroutine.

Application 2 – Micro simulation

34

Application 2 – Micro simulation

With formerly built-up databases of an imaginary labour market and with the help of STATA we will write a
simulator which matches open positions with job seekers. The databases comprise 1908 corporations with
20640 open positions and 81349 people who seek after job. The corporations as well as the seekers have
demands in association with the contingently latter job. Based on a simple algorithm we will assign workers to
positions and estimate job vacancy and unemployment. We would be able to simulate the impact of different
measures affecting this labour market.

Formatting, describing and exploring the source databases

clear Clear the memory, just in case.

set more off Turn off the paging behaviour of STATA. Otherwise
you will have to always press the “next” button to see
the next page of the output.

insheet using

"distances_of_cities.csv",

delim(";")

Import a database which holds distances between the
biggest towns of Hungary.

mkmat budapest bkscsaba debrecen

 eger gyr kaposvr kecskemt ///

 miskolc nyregyhza pcs

 salgtarjn szeged szkesfehrvr

 szekszrd ///

 szolnok szombathely

 tatabnya veszprm zalaegerszeg

 ajka baja ///

 cegld dunajvros rd gdll

 gyngys gyula hajdbszrmny

 hdmezvsrhely ///

 kazincbarcika kiskunflegyhza

 kiskunhalas mosonmagyarvr

 nagykanizsa ///

 oroshza zd ppa sopron

 szentes vc, matrix(CityDist)

Create a matrix from these data in order to later be
easily able to refer these distances.

matrix list CityDist List the matrix, just to see how it looks like.

Application 2 – Micro simulation

35

di CityDist[2,4] What is the distance between Békéscsaba and Eger?

insheet using "offerers.csv",

delim(";") clear

label values corpres CityNames

labe var corpres "Corporation

Residence"

labe var corpname "Corporation Name"

labe var corpid "Corporation ID"

save offerers.dta, replace

Import the database of the corporates who want to
hire workers for their open positions.

Format, make variable labels and save the database
in STATA format.

insheet using "positions.csv",

delim(";") clear

labe var posid "Position ID"

labe var corpid "Corporate ID"

labe var corpwtime "Working Time

Required"

labe var corpquali "Qualification

Required"

labe var corpcrea "Creativity

Required"

labe var corpteam "Team Spirit

Required"

labe var corpcomm "Communication

skills Required"

labe var maxsal "Maximum Salary"

save positions.dta, replace

Import the database of the open positions.

Format and save it.

insheet using "seekers.csv",

delim(";") clear

capture label drop CityNames

label define CityNames 1 "Budapest"

 2 "Békéscsaba" 3

 "Debrecen" 4 "Eger" 5

 "Győr" 6 "Kaposvár" 7

Import the database of the job seekers.

Format, make variable labels, create value labels then
assign it, lastly save the database in STATA format.

Application 2 – Micro simulation

36

 "Kecskemét" 8 "Miskolc" 9

 "Nyíregyháza" 10 "Pécs" 11

 "Salgótarján" 12 "Szeged" 13

 "Székesfehérvár" 14

 "Szekszárd" 15 "Szolnok" 16

 "Szombathely" 17 "Tatabánya"

 18 "Veszprém" 19

 "Zalaegerszeg" 20 "Ajka" 21

 "Baja" 22 "Cegléd" 23

 "Dunaújváros" 24 "Érd" 25

 "Gödöllő" 26 "Gyöngyös" 27

 "Gyula" 28 "Hajdúböszörmény"

 29 "Hódmezővásárhely" 30

 "Kazincbarcika" 31

 "Kiskunfélegyháza" 32

 "Kiskunhalas" 33

 "Mosonmagyaróvár" 34

 "Nagykanizsa" 35 "Orosháza"

 36 "Ózd" 37 "Pápa" 38

 "Sopron" 39 "Szentes" 40

 "Vác"

label values seekres CityNames

labe var seekid "Seeker ID"

labe var seekname "Seeker Name"

labe var seekres "Seeker Residence"

labe var seektdist "Seeker Travel

Distance Wanted"

labe var seekwtime "Working Time

Wanted"

labe var seekquali "Seeker

Qualification"

labe var seekcre "Seeker Creativity"

labe var seekteam "Seeker Team

Spirit"

labe var seekcomm "Seeker

Communication Skills"

labe var minsal "Minumum Salary"

save seekers.dta, replace

Process the data, the core of the simulator

Application 2 – Micro simulation

37

noisily capture mkdir results Create a new folder where we will save the matching
tables for every corporate/position. For every
corporate we are going to create a unique folder and
add every eligible seeker.

Capture - Skip if there is an error

Noisily - do not suppress error message

clear

gen str9 seekid = ""

gen int offers = 0

save "results\\findings", replace

Make a table which will hold every seeker and how
many offers they got.

clear

gen str9 seekid = ""

gen str9 posid = ""

save "results\\matchings", replace

Matching table for which position to which seeker is
assigned (the algorithm is simple: every position gets
the eligible seeker with the lowest minimum wished
salary).

insheet using

"distances_of_cities.csv",

delim(";") clear

mkmat budapest bkscsaba debrecen

 eger gyr kaposvr kecskemt ///

 miskolc nyregyhza pcs

 salgtarjn szeged szkesfehrvr

 szekszrd ///

 szolnok szombathely

 tatabnya veszprm zalaegerszeg

 ajka baja ///

 cegld dunajvros rd gdll

 gyngys gyula hajdbszrmny

 hdmezvsrhely ///

 kazincbarcika kiskunflegyhza

 kiskunhalas mosonmagyarvr

 nagykanizsa ///

 oroshza zd ppa sopron

 szentes vc, matrix(CityDist)

Generate (town-to-town) distance matrix.

Application 2 – Micro simulation

38

use positions.dta, clear

merge m:1 corpid using offerers.dta

sort posid

save posANDofferers.dta, replace

Open positions database.

Merge positions with offerers (corp.) date in order to
have the corporation seat as well.

Sorting by position ID and save

count

local N_positions = r(N)

Counting how many positions there are. We will have
to find a worker (seeker) for every one of them.

scalar pos_nomatch = 0 Storage for the number of positions which did not get
neither one worker.

forvalues i = 1/`N_positions' { Go through all of the positons.

di `i' Monitoring the process: where are we?

quietly{ Suppress terminal output

local corpname =

subinstr(corpname[`i'],".","",.)

local posid = posid[`i']

local corpcrea = corpcrea[`i']

local corpteam = corpteam[`i']

local corpcomm = corpcomm[`i']

local corpwtime = corpwtime[`i']

local corpquali = corpquali[`i']

local maxsal = maxsal[`i']

local corpres = corpres[`i']

Saving the current position's parameters into local
macros (storages).

In corporate name substitute ever dot with null
string. It is crucial because later we will make folder
with these names and dots would make problem.

di "`corpname'" Monitoring: which corp. is under process?

noisily capture mkdir

"results\\`corpname'"

Create a new subfolder with the name of the
corporation. It could be that there is already a

Application 2 – Micro simulation

39

subfolder with the same name, because this may not
be the first cycle.

use seekers.dta, clear Loading the seekers' database so as to be able to
select appropriate ones.

keep if minsal<`maxsal' &

seekcre>=`corpcrea' & seekcomm >=

`corpcomm' & seekteam>=`corpteam' &

seekwtime == "`corpwtime'" &

seekquali == "`corpquali'" &

CityDist[seekres,`corpres'] <

seektdist

Filter out the eligible job seekers.

count

if r(N) == 0 {

scalar pos_nomatch = pos_nomatch + 1

}

Check whether there is at least one eligible worker.

else{ If there is then continue the procedure

save "results\\tmp.dta", replace

outsheet using

"results\\`corpname'\\`posid'.csv",

delimiter(";") replace

Save the results in a temporary folder, because it will
be needed later.

And as a csv file in the corporation's folder.

keep seekid minsal

g str9 posid = "`posid'"

merge 1:1 seekid using

"results\\matchings.dta", update

Compare the actual eligible seekers with the ones
who have already won a position (in the matching
table).

keep if posid == "`posid'" & _merge

!= 5

Drop those seekers who are already assigned to a
position or not concerned for this position.

sort minsal

keep if _n==1

Keep only the seeker who has the lowest salary
requirement.

Application 2 – Micro simulation

40

drop minsal _merge

append using

"results\\matchings.dta"

save "results\\matchings.dta",

replace

Extend the matching table based on the lowest salary
requirement.

use "results\\tmp.dta", clear

keep seekid

Load the previously saved temporary result with the
eligible seekers.

merge 1:1 seekid using

"results\\findings.dta"

Merge the table with the number of offers they got.

replace offers = 1 if mi(offers) If it is the first offer of hers then change the missing
value to one.

replace offers = offers + 1 if

_merge == 3

If it is not the first then increment.

drop _merge

save "results\\findings.dta",

replace

Update the table (seekers and number of offers,
respectively).

} End of the else branch.

use posANDofferers.dta, clear Load the table according to which we make the
search for eligible seekers.

if `i' == 10 continue, break Restriction on the number of positions to which we
are looking for seekers. Break will terminate the loop.

} End of quietly.

} End of for loop.

di "Positions which did not get

enquirer(seeker):"

di pos_nomatch

Display how many positions have no chance to be
fulfilled.

