Empirical labour market analysis

Workshop material, 13t version

Issued: February 10, 2020

bence.papp@uni-corvinus.hu

Content

000 T4 =T 11 PP i
Aim and review of the CoUrse........ciiiiiiiiiiii e i
Exercise 1 — Getting started with STATA and basic statisticsccceerrrrrreeennnrceeeirienennnnnnreeeennnne 1
Importing, editing and basic attributes of the current database.................ccc 1
Labelling variables and values, SaVING..........coooeiiiiiiiii 3
Writing to the output, built-in FUNCLIONScviiiiiiiiiiiiiiiiii e eerarree 5
Generating and replacing new variables, conditioning and comparingccccvvvvvevvirieeeeeeeieeeenernennn. 5
Query statistics, line fitting, regression, ANOVAuuuuiiiiiiiiiiiiieieeeieererrrrrrreerrerrre————————————————————. 6
Appending and merging with other databasesuueii 8
Yo g [aY-4F- e Mol a o L1 Te] o1] oY= PP PPPPPPPRS 10
Writing do files (batch or SCriPt fill@S)......uuviiiiiiiiiiiee e e e 11
Exercise 2 — Cross-sectional analysis of the labour market...........cccoverireeeeeriieenrieeeeeeenneeeeennnne 12
L@DOUN FOICE SUIMVEY ..ottt 12
GENEIATING QB BrOUPS.cevuuueiiiiiieeeiiiie ettt e ettt e ettt seettussereruaseersuaseressasseresssseeesssnseresnsserssnnseensnnneens 14
Indicator for employment, comparing with CSO’S VErsioncccceeeeeiiiii 15
Indicator for unemployment, comparing with CSO’s Versionccccceeeeiiiiii 16
Indicator for activity and Working ageoooeeeeiiiiii i 17
Weighing for inferring from the SAmMPIEeviviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e areeeeseeeeereererane 18
The basic rates: activity, employment, unemploymentcccei 19
ViSUGLIZING OUI FESUITS ..uvvtiiiiiiiiiiiitit e nnan 20
Exercise 3 — Time series analysis of the labour market........ccccccceveeeirrrieeeeeniiicenniieeeeeesneeeennnn 22
Creating new database holding results of calculationseuviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeveeeaes 22
g g T oYl LY d s Y= {o gl o Yo o IO PPPPPPRS 23
GENEIAtING the TiME SEIIES...iiiiiiiiiiiiiiiiiiiiieee ettt ettt ee e et ee e e eeeeeeeaeeeessssssssassssssssssssssssssssssssssssnsssnrrnnes 24
Application 1 — Report generator for unemployment rate......cccccceeiiiiiiiiiiiiiiiiiiiinieieececeeeeeennn 27
Getting acquainted with the calculating do fil@evviiiiiiiiiiiieee e 27
The controlling and invoking VBA COAEcoooeiiiiiiiie e 27
Application 2 — Micro simulation........cciiieeeeiiiiiiiiiiinieerse s rressssessse e s s s s ssnnnssssnns 34
Formatting, describing and exploring the source databases..........ccccccciiii 34
Process the data, the core of the SIMUIATOTviiiiei it e s 36

Aim and review of the course

The mission of this course is to give insight to basics of two main things. The first is measurement
of the labour market and the second is the analysis based on the data gained through the
measurement. Measurement means not only the proper gauge and scale but the knowledge and
the understanding of the subject of the measurement. As measurement covers more than its
name suggests so does analysis. Analysis comprises model application to the segment of reality
under examination, raising adequate questions, choosing suitable instrument — mathematical
or econometrical tools — and the correct interpretation of the results.

As economists are expected to master the skills and capacity of modelling, measurement,
analysis, estimation, interpretation, algorithmization and the usage of certain software so it is in
association with every profession who are up to scrupulously work on a field adjacent to
economics. Every attendee of this workshop seminar is going to get closer to fulfil this
requirement while acquiring the skills to handle a prominent and recognized software, STATA.

The essence and main landmarks of this course can be circumscribed with the element of the
table of contents of this document. It starts with making the students familiar with STATA while
collecting data via a survey and repeating some basic econometric tools in practice. Exercises
will be done on a variety of high quality databases of International Labour Organization, Eurostat
and European Social Survey. After the introductory part the course continues with an insight
into the Hungarian National Labour Force Survey and its usage for cross-sectional analysis of
the labour market. Beside cross-sectional analysis time series analysis shall not be abandoned.
For this reason was the third exercise composed. Ending the course of workshops there are two
applications which present the applicability of STATA for more complex tasks with respect to
labour issues.

Exercise 1 — Getting started with STATA and basic statistics

Exercise 1 - Getting started with STATA and basic statistics

We will collect data through a survey among the students of the group. Then we are going to format the
database, merge the actual database with the results of a former survey, and calculate basic statistics and get

to know the basics of graphical display.

Importing, editing and basic attributes of the current database

cd “S:\Empirical\wD”

dir

clear

insheet using questionnaire.csv,
delim(%“; ")

help insheet

insheet using questionnaire.csv,
clear

save questionnaire.dta

Sets the working directory (WD) of STATA to a certain
folder. Hereinafter there will be no need to give the
full path to STATA if you want to work with files within
this folder.

List the content of the working directory.

Clear the memory of STATA. All observations and
variables will be lost. But this command is crucial if
you want to load new dataset, because that could be
done only if there is nothing in the memory.

Importing data from comma separated value format
file. The option delim determines the value
separator (the character between cells) in the file
being imported to Stata. In the example a semi-colon.

Right at the beginning we must get to know how to
access the manual of Stata and its commands. Let us
have a look what kind of options does the insheet
command have.

After comma you can state options for the
commands. In this case insheet has a clear
named option, which will clear memory before
importing.

Save the data in Stata’s memory onto the hard drive
more specifically into the WD. The file will have Stata
format.

Exercise 1 — Getting started with STATA and basic statistics

use questionnaire.dta

set more off

describe

describe name

help describe

help

d, short

d, simple

inspect hg

codebook hg

list

edit

In advance let us know how to load data from a native
Stata data file into the memory. Type use and as the
parameter of the command give the name of the
Stata file.

Setting the more parameter off, which means that
the output of a command shows up all at once in one
block and not divided into pages.

Describing the dataset in the memory. Basic
information about variables and number of
observations.

The short version of the command describe.
Almost every command has abbreviation. Let us look
into the help.

Opens the help of stata

Displays only the attributes of the database.
Description of the variables is not included.

Only the variable names.

Summarized information about a variable and its
content. The two commands give similar output but
there are also differences between them. Try both
with the same numerical and string type variables!

Listing the whole database. In case of many variables
and immense observations the output will not be
easily human-readable. What information do we
have here?

Opens the database in an independent new window.
Excel-like look and feel. You can copy data from Excel
directly into this table.

Exercise 1 — Getting started with STATA and basic statistics

Labelling variables and values, saving

label variable name “Full name”

label variable neptun “Neptun code”

label variable sex “Gender”

label variable hg “Body height”

label variable pl “Palm length”

label variable pw “Palm width”

label variable by “Year of birth”

label variable bm “Month of birth”

label variable bd “Day of birth”

label variable paddr “Permanent
address”

label variable dist “Paddr distance

from Bp”

label variable
school”

hschool “Type of high

label variable “Residence while

learning”

res

label variable ttime “Travel time”

label variable wgroup “Workshop
group”

label variable program “Degree
course”

It gives the label “Full name” to the variable named
“name”.

Variable names are typically short and terse. Labels
are descriptive, informative. In commands you refer
to the variable with its name (not with the label).

Press the button PageUp and you can move backward
in the command history.

Giving label all of the variables.

You can copy the variable name from the variable
window if you click on it.

You can select the former (or any previous) command
also from the command history window by clicking
on one of them.

Exploring the new labels of the variables.

Exercise 1 — Getting started with STATA and basic statistics

d p?

tabulate hschool

label define 1 sex 0 “male” 1
“female”

label define 1 hschool 1 “grm.sch.”
2 “ec.sec.voc.sch.” 3

“oth.sec.voc.sch.” 4 “other”

label define 1 res 1 “Pest” 2 “Buda”

3 “Pest county” 4 “Alfold(east)” 5
“Dunantul (west)” 6 “Abroad”

label values sex 1 sex
label values hschool 1 hschool

label values res 1 res

tab hschool
tab sex

tab 1 res

label dir
label list 1 res

label 1list all

labelbook 1 res

labelbook

save wgroupl, replace

dir

You can use wildcard characters (e.g. asterisk and
question mark).

Frequency table on type of high school.
The categories are codes. We want to label the

categories in order to make them more informative.

Define a value label sets.

Assign the value label sets to the proper variables.

Now the categories are already labelled.

Information about value label sets.

Saves the database in STATA format. Replace
means: overwrite existing file if necessary.

Dir reports that the new file came into being within
the WD.

Exercise 1 — Getting started with STATA and basic statistics

label drop 1 sex

Writing to the output, built-in functions

display “Hello”

di 3+8

di sin(2* pi)

di “3+8”

44

di “sin(2* pi)

di mdy(9,1,2019)
di mdy(1,1,1960)

di mdy(12,30,1959)

Deleting a value label set (I_sex). It is inevitable in
case you want to edit or rewrite a label set. Stata lets
you modify a set only in a complicated way; it is easier
to drop (erase) the old one and create a new one.

Displays a string on the output window.

Displays a number.

Calculates the operation and displays the result.

Displays the operation as a string.

mdy returns with the number of days since 1 January
1960 until day given as argument.

The result, obviously, could be negative as well.

Generating and replacing new variables, conditioning and comparing

generate new var = 0
generate byte new var2 = 0
generate float new var3 = 0.0

gen birth date = mdy (bm,bd,by)

label var birth date “Date of birth”

list birth date

Generates a new variable and initializes it with the
value 0. Initialization is compulsory!

Optionally you can prescribe the type of variable.

Generates a new variable for every observation and
sets its initial value to the complete birth date formed
from the month, day and year.

Lists the variables given in the argument list for all
observations.

Exercise 1 — Getting started with STATA and basic statistics
format birth date %d

format birth date %dM.D,CY

format birth date %dCY-M-D

list birth date

gen s _age 2019 = 2019-by

gen age 2019 = s age 2019

replace age 2019 = s age 2019-1 if
mdy (bm,bd, 2019) > mdy(9,1,2019)

compare s age 2019 age 2019
save wgroupl,

replace

Query statistics, line fitting, regression, ANOVA

summarize hg

summarize hg, detail
_pctile hg, n(100)
di r(r34)

Change the display format of the birth_date variable
to date format. First UK style.

Then USA style.

Lastly Hungarian style.

Generates simple age proxy of every observation’s
age in 2019.

Generates precise age derived from the age proxy.

Decrement age_2019 by one if the person’s birthday
is not over on the current day.

replace is for replacing the values of an existing
variable. You cannot do this with generate.
generate is for generating non-existing variables. If
you insist using generate you should delete the
variable first with the drop command.

if clause is for conditioning a command. Here the
replace command. It stipulates that replacement
should be carried out only if the observation’s
birthday is not over on the current day.

Compares two variables for every observation.

Saving for safety reasons.

Getting basic statistics about the body height. With
the detail option we can request more profound
statistics.

Quantiles more profoundly. The first command
calculates quantiles with the cardinality given by the
n () option (this case 100, so the quantiles will be
percentiles). The second command displays one of
the results stored in the r vector (results’ vector)
— in this case the 34th percentile.

Exercise 1 — Getting started with STATA and basic statistics

tabulate sex

tabulate sex, sum(hg)

tabulate res sex
tab res sex, row
tab res sex, row nofreqg
tab res sex, col

tab res sex, cell

tab res sex, sum(ttime)

histogram hg

histogram hg, bin(3)

histogram hg, bin(3)
xlabel (150 (20)210)

gen palmsur = pl*pw

reg palmsur hg sex

gen hg sqg = hg”"2

reg palmsur hg sg sex

Plain frequency table.

Summary statistics about body height broken down
by gender.

Two-way cross table (contingency table). The first
variable gives the values for the vertical axis and the
second variable gives the values for the horizontal
axis.

Adds row relative frequencies.

Row relative without absolute

frequencies.

frequencies

Add column relative frequencies.

Add cell relative frequencies.

Combination of contingency table and summary
statistics.

Calculates and display histogram over height.
Histogram with forced number of intervals.

Formatting the y-axis scale labels.

Generate the surface of palm for everyone.

Make regression for palm’s surface with height and
sex dummy.

Note the R squared parameter.

Generate the square of body height.

Now make the regression again but this time with the

square of the height.

R squared is better, the model fits better.

Exercise 1 — Getting started with STATA and basic statistics

graph twoway
(scatter palmsur hg),

(1fit palmsur hg)
name (gl)

graph twoway
(scatter palmsur hg sq),

(gfit palmsur hg sq)
name (g2)

graph dir

graph display gl

graph display g2

graph drop gl g2

one hg sex, tab

Appending and merging with other databases

describe using wgroup?2

append using wgroup?2

tab neptun

Visualizing the formerly revealed relationship.

Linear and quadratic fitting.

List all graphs which are in the memory.

Displaying certain graph.

Deleting graphs.

One-way ANOVA on height by sex.

According to F statistics there is significant difference
in height by gender.

Describe database which is not in the memory. Let us
memorize the number of observations.

Counting the number of observations in the actual
database. Note it.

Append new database to the memory.

Count the number of observation in the resultant
database. It must be the sum of the former two
numbers.

Tabulate by Neptun code. This code is unique, and
there is two observations with the same code.

Exercise 1 — Getting started with STATA and basic statistics

list name neptun wgroup if neptun ==
“IRYX2F”

use wgroupl, clear

merge 1:1 neptun using wgroupZ2

list name neptun wgroup 1f name ==
“Papp Bence”

tab merge

rename merge location

list name location

list name wgroup

list name if wgroup ==

list name if mi (wgroup)

It may be the teacher who is twice among the
observations. Listing with restriction to a certain
neptun code. Neptun code is a string so you have to
put it between double quotation marks.

Load in the data of our group again.

Merge the database in the memory (master) with the
database currently loaded (using) by the variable
named neptun.

Now there is only one person to one Neptun code.

A new variable named _merge has been generated. It
informs us about the observations’ former location.

If you want to process new merging it will be
unsuccessful until you delete or rename this variable,
because every merge wants to generate new
_merge and it cannot be done unless the former is
vanished.

Give a more apt name to _merge.

Who was in the master, who was in the using
database and who was in both?

The . (dot) values means missing observation.
Infelicitously it also means infinite. As a
consequence you have to be aware of this when
forming conditions in an if clause.

Let us replace one’s body height with ., and then list
the names of those who are taller than 170 cm.

Filter out the missing observations.

Either with the . value or with built-in function.

Exercise 1 — Getting started with STATA and basic statistics

label data “Data of two students’
groups (year of 2020 and 2019)”

save wrgoups, replace

Sorting and conditioning

list name hg
sort hg

list name hg

gsort hg

gsort -hg

list name hg in 1/5

list name hg in -3/L

list name i1if ttime < 10 & hschool
1 & (res res == 2)

sum hg i1f sex

sum hg i1f sex

10

Adds caption to the database.

Examine the effect of the sort command.

It produces an ascending order.

Ascending and descending ordering. Nota bene the
usage of the minus sign.

The first 5 (tallest) member of the group.

The last 3 (shortest) member of the group.

List the names of members who travel less than 10
minutes to the university and who attended grammar
school and who live during education either in Pest or
Buda.

Logical relations (operators):

AND - &
OR - |
NOT - !
EQUAL -
(nota bene: double equal sign is for equality
checking, single equal sign is for assignment!)
NOT EQUAL -
GREATER THAN OR EQUAL -
LESS THAN OR EQUAL -

I=
>=
<=

What are the average heights of females and males?

Exercise 1 — Getting started with STATA and basic statistics

Writing do files (batch or script files)

doedit

* Single line comment type 1
// Single line comment type 2
/* Comment line 1

Comment line 2 */

clear
cd “S:\Empirical\wD”

use wgroups

log using 1log2019.1log, replace text

tab sex

sum hg ttime

log close

do practice 0l.do

11

Open the do editor in a new window. We will work
here with finishing the do file.

You can add comment to the do file. These lines will
not be executed. They are mainly for documentation.

Initial commands of the do file.

Open log file to write the following results into it.

Make computations.

Closing the log file.

Save the do file with the name of “practice_01.do”.

Revert to the command window and type the do
command with the filename of our do file. It will
execute it.

Check out the log file in the WD.

Exercise 2 — Cross-sectional analysis of the labour market

Exercise 2 - Cross-sectional analysis of the labour market

Using the Hungarian Labour Force Survey we will have a brief insight to the results of comprehensive data
acquisition and catch a glimpse of its method. We will generate the basic and most important indicators and

categories for analysis.

Labour Force Survey

use LFS(66th wave) .dta

d county area hid person

d county-person

d, s

count

cou if kor>14 & kor<75
cou if kor>74

cou 1f kor<1l5

list hid person in 1/20

codebook hid person

12

Open the 66™ wave of the Hungarian LFS. Wave
means a quarter, and the first quarter was 1992Q1.
Let us calculate and then check which year and which
guarter do we have at hand!

Let us peruse the database!

Start with the first four variables. We can do it in the
way we have already learnt, or with the hyphen
operator (-) which is for setting a range of
consecutive variables.

In this example the second describe command has
every variable from county to person as parameters.

The range operator (hyphen) could be used for other
command as well (e.g tabulate or summarize).

How many people are in the sample?

The count command is also good for counting every
observation, and more ...

We can use count with conditions.

Let us have a deeper look into the database.

hid uniquely identifies households and person the
individuals within.

There is no missing observation for household
identifier and person number.

Exercise 2 — Cross-sectional analysis of the labour market
sort hid person

1000000 + n

gen myid =

1 in 13
wel[l3]

replace myid =

replace myid = in 12

tab
tab
tab
tab
tab

wlhour
absent c
mionem
search b
avail

d weight

d educ d educH
tab educ d educH
d absent c absentH

tab absent ¢ absentH

tabl hcitiz magyar allev
tab Magyar, missing

tab allev, missing

13

In association with the household identifier one could
be curious about how to generate a series of unique
numbers.

Sort data firstly by household identifier and secondly
by person number within the household.

We can use special variable n that holds the row
number in which the observation under calculation
can be found.

Generating unique identifiers starting from 1000000
for each observation.

If we are talking about generating by row numbers,
here is how to access variable values by row number.
Using the square brackets or the in qualifier
are the tools for this task.

Taking the second replace command we address
the 12t value of myid and replace it with the 13%
value of wei.

And there are the key variables which make us able
to identify the labour market statuses.

Who worked at least 1 hour in the previous week?
The question is set only to people in working age.

Weight variable to be able to estimate for the
population from the sample.

Harmonized variables to ease comparison between
countries.

Let us check the data concerning the citizenship of
the observed person.

tabl makes tables according to each variable in its
argument respectively.

Exercise 2 — Cross-sectional analysis of the labour market

Generating age groups

// Age group generator do file.

gen agegroup = O

replace agegroup 1 if age 14
replace agegroup 2 if age 19
replace agegroup 3 if age 24
replace agegroup 4 if age 29
replace agegroup 5 if age 39
replace agegroup 6 1f age 49
replace agegroup 7 if age 59
replace agegroup 8 1if age 69
replace agegroup 9 if age 74

label var agegroup "Age groups"
label define 1 agegr 0 "0-14" 1 "15-
19" 2 "20-24" 3 "25-29" 4 "30-39" 5
"40-49" 6 "50-59" 7 "60-69" 8 "70-
74" 9 "75 or more"

label values agegroup 1 agegr

// End of do file

There could be missing observations because of the
jump in the questionnaire.

The missing option make tab count also the
missing values and put into the table.

Use the display command as a calculator to check
whether the values add up the entire dataset.

Start a do file with this header.

Generate a polychotomous variable for coding the
age groups.

The group number 1 gathers everybody who is older
than 14 years and younger than 20.

The group number 0 consists of the people who are
younger than 15.

Everybody who is elder than 74 are convened into the
group number 9.

Labelling the age group coding variable.

Save and close the do file.

Exercise 2 — Cross-sectional analysis of the labour market
gen agegroup2 =

recode (age, 14,19,24,29,39,49,59, 69,
74,75)

tabl agegr*

The easier way for the same task with the help of a
built-in function. As the arguments of recode you
have to give the variable which you want to stratify
and the upper limit of the nascent groups.

Review the two categorizations.

Indicator for employment, comparing with CSO’s version

gen employed=0 if kor>14 & kor<75

replace employed=1 if wlhour==1 |
absent ¢ == 1

label var employed “Employed or not
employed - YES/NO dichotomous
variable”

label dir

label list yn yesno

label values employed yn

tab employed

compare employed csoel

15

Generate a new variable but only if the person’s age
is greater than 14 and less than 75 (he or she is in the
working age group). Older and younger people will
get a missing value (. — the dot).

This variable will code whether a person is employed

or not.

Replace the employed named variable with 1 if the
person has worked at least 1 hour in the last week or
was temporarily away from his or her job.

Give a proper label for our new variable.

Looking for value label set.

“yn” will do perfectly.

Check out what have we done.

Compares our employed variable with the one which
was generated by the CSO (Central Statistical Office).

There is a slight difference: there are few people who
are employed according to our indicator and not by
the official. Let us find out the reason!

Exercise 2 — Cross-sectional analysis of the labour market

list mionem employed csoel if
employed>csoel

d mionem

label list mionemen

tab mionem, nolab

numlabel mionemen, add
tab mionem
numlabel mionemen, remove

tab mionem

replace employed = 0 if mionem == 3

compare employed csoel

The variable mionem informs us about whether the
person are away from her/his work more than 3
month and gets at least the half of her/his salary or
not.

If not than the person cannot be classified into the
employed class. It is true for every 8 person in
question. Let us modify our variable!

Query the label value set’'s name belonging to
mionem. Then find out the value which belongs to
“away more than 3 month and gets less than half of
salary”. We have to have it because if conditions can
be composed only with values (not with labels).

Alternative way for revealing the values behind the
labels. Tabulates without labels.

Other solution for disclosing the numbers assigned to
the value labels.

You can add and remove the values from the labels.

The needed modification.

The comparison reports that there is no more
divergence.

Indicator for unemployment, comparing with CSO’s version

tabl search b meth* avail

16

Tabulate the key variables for defining the state of
unemployment.

To be unemployed one shall not be occupied (l.), shall
seek job (Il.) and shall be able to take the job (lII.). If
someone does not seek job but has already found a
job and will begin in short time the Il. condition does
not bound.

Not every search method counts as accepted
method.

Exercise 2 — Cross-sectional analysis of the labour market

gen unemployed 0 if kor>14 &

kor<75

replace unemployed = 1 1f (search b
== 1 | search b == 2) & avail == 1
compare unemployed csou

drop unemployed

gen unemployed = 0 if kor>14 &
kor<75

replace unemployed = 1 if (
(search b ==1 & (metha == 1 |
methb == 1 | methc ==1 | methd ==1 |
methe ==1 | methf ==1 | methi ==1 |
methj == | methk == | methm == 1
)) | search b == 2) & avail == 1

compare unemployed csou

label var unemployed “Unemployed or
not unemployed - YES/NO dichotomous
variable”

label values unemployed yn

gen UE 0 if employed == 1 |
unemployed == 1

replace UE

1 if unemployed == 1

label var UE “Unemployed - defined
over actives”

label values UE yn

Indicator for activity and working age

gen active 0 if kor>14 & kor<’7/5

17

Generate our unemployed variable for the working
age class.

Replace it according to the rule above.

Comparing with the CSO’s version. There is again a
minuscule divergence. There are some unemployed
according to our computation who are not
considered as unemployed by the CSO. Let us search
for the roots again!

Recreate the unemployed variable, but now we will
filter out certain search methods (g, h and).

Comparison for checking our compliance.

Labelling our new variable.

Generate a second version of unemployed called UE
which will fit better for calculating the
unemployment rate.

The relevant difference between unemployed and UE
is that the former is defined over active aged and the
latter is defined over actives.

Generating binomial variable for actives.

Exercise 2 — Cross-sectional analysis of the labour market

replace active =
| unemployed == 1

1 if employed == 1

label var active “Active or not
active — YES/NO dichotomous
variable”

label wvalues active yn

gen workage = 0

replace workage = 1 if kor>14 &

kor<75

label var workage “Working age? -
YES/NO dichotomous variable”

label values workage yn

save “LFS66 processed”, replace

Weighing for inferring from the sample

d weight

codebook weight

tabl employed unemployed active
workage

tabl employed unemployed active
workage [weight = weight]

gen rweight=round (weight, 1)

tabl employed unemployed active
workage [weight = rweight]

18

Generating binomial variable for working age.

Saving our work.

The weight variable. Every observation has a weigh
meaning how many other people she or he
represents in the population (Hungary).

The labour market statuses and their numbers for our
sample.

The labour market statuses and their numbers’
estimate for the population.

An error message appears: we shall use integer
weights.

Generate a rounded weight derived from the original
weight variable.

Now it works!

Exercise 2 — Cross-sectional analysis of the labour market

tab county [w=rw]

tab sex [w=rw]

tab educH [w=rw]

tab agegroup [w=rw]

tab agegroup sex [w=rw], nofr row

tab employed sex [w=rw]

The basic rates: activity, employment, unemployment

sum active [w=weight]

sum employed [w=wel]

sum UE [w=wel]

sum unemployed [w=wei]

sum workage [w=weil]

tab educH [w=weil], sum(UE)

19

Examine our labour market from different aspect
with descriptive statistics.

The activity (participation) rate: the share of actives
among working aged.

The mean of this variable adds up the activity rate
because it was defined over the group of active aged
people (everybody else has missing value for this
variable) and who is active has one and who is not
active got zero.

Note that the command summarize does not
prerequire integer weights!

The employment rate: the proportion of employed
among the working aged.

The unemployment rate: the number of unemployed
divided by the number of actives.

Nota bene, we intendedly defined UE (in contrast to
the variable unemployed) on the basis of active
people (and not on the domain of active age people).

The mean of unemployed adds the share of
unemployed people among working age population.

The mean of workage adds the proportion of the
entire population who are in working age.

Calculate the unemployment rate broken down by
educational achievements.

Exercise 2 — Cross-sectional analysis of the labour market

tab educH [w=weil], sum(UE) nost nofr
noobs

tab educH, sum(UE) nost nofr noobs
tab sex [w=weil], sum(UE) nost nofr
noobs

tab agegroup [w=wei], sum(UE) nost
nofr noobs

tab county [w=wei], sum(UE) nost
nofr noobs

tab educH sex [w=weil], sum(UE) nost

nofr noobs

tab educH
nost nofr

sex [w=weill],
noobs

sum (employed)

tab educH
nost nofr

sex [w=weil], sum(active)

noobs

tabstat active employed UE [w=wei],
s (mean) by (educH)

Visualizing our results

graph hbar employed [w=weil],

over (county)

graph hbar employed [w=weil],

over (county, sort (1))

graph hbar employed [w=weil],

over (county, sort((mean) UE))

20

The same but without the standard deviation, the
frequencies and the observations.

The same without weighing. What is the reason of the
difference? Somehow certain people are
overrepresented in the sample.

Do the same comparison for employed: the

weighted and unweighted frequencies!

The unemployment rate grouped by the main
stratifying variables.

The main rates in contingency tables.

All important rates in one table by educational
attainment.

A bar chart with the mean of the given variable
(employed) grouped by counties.

Sorting the bars according to their length in ascending
order.

Ordering by the unemployment rate of the counties.

Exercise 2 — Cross-sectional analysis of the labour market

[w=weil,
UE)

graph hbar employed

over (county, sort((mean) des)

graph bar UE [w=wei], over (agegroup,
label (angle (vertical))) over (sex)
nofill

graph bar UE [w=wei], over (agegroup,
label (angle(vertical))) over (sex,

relabel (0 "na"™ 1 "male" 2 "female"))
nofill
graph bar UE [w=wel], over (agegroup,

label (angle (vertical)))
relabel (0 "na™ 1 "male"
nofill ylabel (0(0.02)0.1
0.1(0.1)0.4, angle(horizontal)
labsize(small)) ytitle ("Unemployment
rate")

over (sex,
2 "female"))

21

Ordering by the unemployment rate of the counties
in descending order.

Draw bars for unemployment rate by age groups and
gender.

Without nofill the empty categories would be
displayed as well.

Without the label option the labels would be
displayed horizontally and will overlap each other.

Add new labels for genders omitting the value from
it. Shows off better.

Set the labels for the y axis so as to compare easier
the shorter bars.

Add a more correct title for the value axis.

Exercise 3 — Time series analysis of the labour market

Exercise 3 - Time series analysis of the labour market

Continuing the analysis of the Hungarian labour market through the LFS we turn to another aspect namely the
dynamic of phenomena. Using the concept of the main indicators learned in the previous section we will
assemble time series reporting of the changes of labour market.

Creating new database holding results of calculations

use LFS66 processed, clear

graph bar employed UE active,

over (agegroup,

label (angle(vertical))) over (sex,
relabel (0 "na" 1 "male" 2 "female"))
nofill vylabel (#6,angle (horizontal)
labsize(small)) ytitle("Basic
indicators") legend(label (1
"Employment rate") label (2
"Uemployment rate") label (3
"Activity rate")) title("Hungary's
Labour Market 2008 2nd quarter")

collapse UE

list

use LFS66 processed, clear

collapse (count) UE
collapse (mean) UEr=UE ACr=active
(rawsum) NR=wei 1f workage==

[w=wel]

22

Open the previously saved database.

Just for revision have a look at the main indicators.

It makes a new database with only one variable and
with only one observation which is a statistic (mean
by default) of the given parameter (UE).

See what we have gotten.

Load our source database again.

Let us count the number of defined (non-missing)
observations for UE and make a new table for it.

Put unemployment rate and activity rate with new
variable names UEr and ACr into a new table and in
addition write as the third variable, named NR, the
estimated number of people in working age.

rawsum ignores the weight variable.

Exercise 3 — Time series analysis of the labour market

collapse (mean) UEr=UE ACr=active

Er=employed (count) CUE=UE

CAC=active CE=employed (rawsum)

NR=weil 1f workage==1 [w=wel],

educH)

sum NR

di r (sum)

Writing cycles — the for loop

// Do file for basic cycles

foreach 1 of numlist 1 2 5 43

di i’

}

// End of do file

foreach 1 of numlist 6/12

{

by (sex

{

23

Extend the previous table with the number of non-
missing observation in the sample and break down
firstly by gender and secondly by educational
attainment.

Check whether the sum of NR adds up the total
number of people in working age.

After calling the summarize command STATA
stores the sum of all observation’s value belonging to
the variable in the r system matrix under the row
named sum.

Open the do editor and write the for loop into it.
Execution advisably should be carried out from the do
editor.

The statement starts with the word foreach.
Then the name of the cycle variable shall be given.
It is followed by the key word of.

That follows the declaration of what kind of list do we
want to put the element on which the loop will have
to go through on. Numlist is a list consisting of
numbers.

Then we define the list’s elements.

The trunk of the loop starts with an opening curly
bracket.

The content of the trunk could be any of STATA’s
command in any number.

The loop ends with a closing curly bracket.

To refer to the actual content of the cycle variable you
have to put the name of the cycle variable between a
special brackets (open with " (AltGr+7) and close with
‘ (Shift+1)).

Other types of number list’s element definition.

Exercise 3 — Time series analysis of the labour market

di “i’

}

foreach i of numlist 1(2)11 {
di i’

}

foreach 1 of wvarlist UE active

employed {
di “The mean of 1'%
quietly sum i’ [w=weil]

di r (mean)

}

Generating the time series

// Time series generator do file

set more off

foreach i of numlist 1(4)85 {

use alfs i' comp, clear

gen byte active=0 if korH>14 &
korH<75

replace active=1 if csoel==1 |
csou==

gen byte UE=0 if active==1
replace UE=1 if csou==

gen byte m act = active if sex

gen byte f act = active if sex

gen byte m emp = csoel 1f se

1

1

2

24

A for loop for skimming through a list of variables.
A variable list is declared by the word varlist.

With quietly we suppress the terminal output of
summarize and then query only the mean from the
results.

Open the do editor and start a do file.

Turn out paging — do not bother ourselves with
clicking next after every page in the output window.

The cycle will go through LFS-s as from 1992q1 until
2013q1.

Generating the main labour market state indicators
for every quarter.

Exercise 3 — Time series analysis of the labour market

gen byte f emp = csoel if sex

gen byte m ue = UE 1if sex == 1

gen byte f ue = UE 1f sex

collapse active
[w=weight]

csoel UE m act-f ue

global date = 1992+ (i'-1)/4
gen str6 date = "Sdate" + "gl"

order date, before(active)

if "1i' > 1 append using Main rates

save Main_rates, replace

}

sort date

gen x= n

global xlabell = ""
foreach i of numlist 1/10 {
Ti'+1991

local year =

global xlabell
"\year'qll' mw

" Sxlabell "1

}

global xlabel2 = ""
foreach 1 of numlist 11/22 {
local year = "i'+1991

global xlabel2 = "
"\year'qll' mwy

Sxlabel2 "1'

25

Make a new table with the rates.

Jot down the current year/quarter.

Put the date variable in front of the columns.

If it is not the first year then append the data of the
former year to it.

Update the output table anyway.

Sorting the table by date.

Generating serial numbers — preparing for plotting.

Define two macros (xlabell and xlabel2) for holding
the time labels for the graph.

Two is required because one could not hold so long
text we need.

Exercise 3 — Time series analysis of the labour market

twoway (bar UE x, fcolor("200 200 Plotting the overall unemployment rate and minor
200™) ylabel(O(OO2)Ol4) ratesbygender_

barwidth (0.5)) (line f ue x, 1lw(l))

(line m ue x, 1lw(l)) ,

legend (label (1 "Overall ue rate™)
label (2 "Women ue rate") label (3
"Men ue rate")) xlabel (Sxlabell
Sxlabel?2, angle(vertical))
xtitle("") ytitle ("Unemployment
rates")

26

Application 1 — Report generator for unemployment rate

Application 1 - Report generator for unemployment rate

STATA could be used from other application (e.g. MS Word) as an object. It makes us room to connect to STATA
from another program (e.g. VBA) without having to open it. Windows mediate between the programs; but of
course it has to know about the object — you have to register STATA (execute STATA with parameter:
"SataSE.exe /Regserver" or "SataSE.exe /Register"). We will write a terse but pithy VBA code which uses STATA
to calculate unemployment rate from LFS and its change from year to year and incorporate these data into a

report.

Getting acquainted with the calculating do file

use lfsS$SsDate.dta, clear

gen active = 1 if csou == 1 | csoe
== 1

sum csou if active == [w=weight]
scalar uel = r (mean)

use lfsS$SeDate.dta, clear

gen active = 1 if csou == 1 | csoe
== 1

sum csou 1f active == [w=weight]
scalar ue?2 = r (mean)

The controlling and invoking VBA code

Sub STATA ()

27

Open an LFS survey which belongs to the
year/quarter given by the global macro called sDate
(starting date).

sDate is set by the calling application, in our case the
VBA code from MS Word (it will be discussed in the
next section).

Generate the binomial variable for actives.

Calculate the unemployment rate.

Save the unemployment rate into the storage named
uel.

Do the very same with the other year’s (per quarter
of course) LFS. The global macro for that is eDate
(ending date).

Store the respective unemployment rate into ue2.

Start a subroutine in MS Word.

Application 1 — Report generator for unemployment rate

Dim startingDate As String:
startingDate = "2008g2"

Dim endingDate As String: endingDate

= "2009q2"

Dim WDpath As String: WDpath
"""g:\ENG\Teaching
materials\Automatic Unemp Report\"""

Dim stataob]

Set stataobj
CreateObject ("stata.StataOLEApp")

Dim return code As Integer

Selection.WholeStory
Selection.Delete

For i 1 To 30

ActiveDocument.Paragraphs.Add

Next 1

With ActiveDocument.Paragraphs (1)

.Range.Text = "Report on

Unemployment"

.LineSpacing = 24

.Alignment = wdAlignParagraphCenter
.Range.Font.Bold = True
.Range.Font.Size = 24

End With

28

Declare a new string with the content regarding the
starting date of the analysis.

Declare a new string with the content regarding the
ending date of the analysis.

String for the WD of STATA.

Declare a new object and set it to STATA as an object.

Simple speaking from here on stataobj will represent
STATA.

Storage for the return code of different functions. If
there will be problems during executions it could help
us debugging.

Put 30 paragraphs into a bank new Word document.
Later we are going to edit them.

Edit and format the title.

Application 1 — Report generator for unemployment rate
With ActiveDocument.Paragraphs (2) Edit and format the content about the time horizon

of the analysis.
.Range.Text = "Change from " +

startingbDate + " to " + endingDate
.LineSpacing = 12

.Alignment = wdAlignParagraphCenter
.Range.Font.Bold = False
.Range.Font.Italic = True

.Range.Font.Size = 16

End With
With ActiveDocument.Paragraphs (3) Edit the author’s paragraph
.Range.Text = "Made by Kiss Pista"

.LineSpacing = 12

.Alignment = wdAlignParagraphCenter
.Range.Font.Bold = False
.Range.Font.Italic = True

.Range.Font.Size = 16

End With
With ActiveDocument.Paragraphs (4) Edit the information about the date of reporting.
.Range.Text = "Date of creation: " &

Format (Now, "dd.mm.yyyy")
.LineSpacing = 50

.Alignment = wdAlignParagraphCenter
.Range.Font.Bold = False
.Range.Font.Italic = True
.Range.Font.Size = 16

End With

29

Application 1 — Report generator for unemployment rate

return code stataobj.DoCommand ("cd

" + WDpath)

If return code <> 0 Then

MsgBox "Error while setting WD."
Exit Sub

End If

return code
stataobj.DoCommand ("global sDate
+ + StartingDate 4+ mnnmy

"

mwioivww

If return code <> 0 Then

MsgBox "Error while setting starting
date macro."

Exit Sub

End If

return code
stataobj.DoCommand ("global eDate
{; mywmn ‘F E} Ij,(j,j, Ij,gJ [) Ei,t: E} ‘F mwywmww)

— "

If return code <> 0 Then

MsgBox "Error while setting ending
date macro."

Exit Sub

End If

return code stataobj.DoCommand ("do
calculations.do")

If return code <> 0 Then

MsgBox "Error while executing do
file."

Exit Sub

End If

30

Command STATA to change its WD to the predefined
WD.

If the return code is not zero, then a problem
occurred. A dialog box will show up to inform us and
then terminate the execution of the subroutine.

Setting the starting date macro for STATA. Recall that
it is used in the before-mentioned do file.

Setting the ending date macro for STATA. Recall that
it was the other important message to be passed to
STATA.

Execute the calculating do file.

Application 1 — Report generator for unemployment rate
Dim uel As Double

uel = stataobj.ScalarNumeric ("uel")
* 100

Dim ue2 As Double

ue?2 = stataobj.ScalarNumeric ("ue2")

* 100

Dim rText (7) As String

Dim rTextNumber As Integer

rText(l) = "I am very sorry to
announce that the unemployment rate
increased. The increment is " &
Format (ue2 - uel, "#0.0") & "
percentage point (from " &

Format (uel, "#0.00") & " to " &
Format (ue2, "#0.00™) & ")."

rText (2) = "I regret reporting that

the unemployment rate increased. The
increment is " & Format (ue2 - uel,
"#0.0") & " percentage point (from
& Format (uel, "#0.00") & to " &

Format (ue2, "#0.00") & ")."

"

"

rText (3) = "It is to be pitied that

the unemployment rate increased. The
increment is " & Format (ue2 - uel,
"#0.0") & " percentage point (from "
& Format (uel, "#0.00") & " to " &
Format (ue2, "#0.00"™) & ")."

rText (4) = "It is to the great
delight of me to report that the
unemployment rate fell. The
decrement is " & Format (uel - ue2,
"#0.0") & " percentage point (from "
& Format (uel, "#0.00") & " to " &
Format (ue2, "#0.00") & ")."

rText (5)
that the unemployment rate fell.

= "I am pleased to Jjot down
The

31

Get the unemployment rate for the first analysed
quarter. Transform it to percentage.

Get the unemployment rate for the second analysed
quarter. We transform it also to percentage.

Declare an array of strings to make it hold different
report text alternatives to make our work more
variegated.

Declare an integer to store the chosen number of text
in the text array.

Fill the array with texts.

The first three is for the bad news which means that
the unemployment rate lifted.

The next three is for good news which means quite
the contrary in terms of unemployment rate.

The seventh is a neutral message for neutral situation
(no change in unemployment rate).

All of them embeds the rates acquired from STATA.

Application 1 — Report generator for unemployment rate

decrement is " & Format (uel - ue?2,
"#0.0") & " percentage point (from "
& Format (uel, "#0.00") & " to " &
Format (ue2, "#0.00") & "™)."

rText (6) "T am happy to assert
that the unemployment rate fell. The
decrement is " & Format (uel - ue?2,
"#0.0") & " percentage point (from
& Format (uel, "#0.00") & " to " &
Format (ue2, "#0.00™) & ")."

rText (7) = "Nothing changed in
association with unemployment rate.
It is and it was " + Format (uel,
"#0.0") + " percentage point."

If ue2 > uel Then

Randomize

+

rTextNumber Int (3 * Rnd) 1

ElseIf ue2 < uel Then
Randomize

rTextNumber Int (3 * Rnd) + 4

Else
rTextNumber

End If

With ActiveDocument.Paragraphs (5)

.Range.Text rText (rTextNumber)

.LineSpacing 12

.Alignment

wdAlignParagraphLeft

.Range.Font.Bold False

.Range.Font.Italic = False

.Range.Font.Size 12

End With

32

According to the fact whether the unemployment
rate increased or decreased or did not changed we
randomly chose a text from the string array.

In the last edited paragraph we insert the chosen text
with the results of the calculation.

Application 1 — Report generator for unemployment rate
Set stataobj = Nothing After finishing our work we have to terminate the

object and free memory.

End Sub The end of the subroutine.

33

Application 2 — Micro simulation

Application 2 - Micro simulation

With formerly built-up databases of an imaginary labour market and with the help of STATA we will write a
simulator which matches open positions with job seekers. The databases comprise 1908 corporations with
20640 open positions and 81349 people who seek after job. The corporations as well as the seekers have
demands in association with the contingently latter job. Based on a simple algorithm we will assign workers to
positions and estimate job vacancy and unemployment. We would be able to simulate the impact of different

measures dffecting this labour market.

Formatting, describing and exploring the source databases

clear

set more off

insheet using
"distances of cities.csv",
delim(";")

debrecen
kecskemt ///

mkmat budapest bkscsaba
eger gyr Kkaposvr

miskolc
salgtarjn szeged
szekszrd ///

nyregyhza pcs
szkesfehrvr

szolnok szombathely
tatabnya veszprm zalaegerszeg
ajka baja ///

cegld dunajvros rd gdll
gyngys gyula hajdbszrmny
hdmezvsrhely ///

kazincbarcika kiskunflegyhza
kiskunhalas mosonmagyarvr
nagykanizsa ///

zd
ve,

oroshza
szentes

ppa sopron
matrix (CityDist)

matrix list CityDist

34

Clear the memory, just in case.

Turn off the paging behaviour of STATA. Otherwise
you will have to always press the “next” button to see
the next page of the output.

Import a database which holds distances between the
biggest towns of Hungary.

Create a matrix from these data in order to later be
easily able to refer these distances.

List the matrix, just to see how it looks like.

Application 2 — Micro simulation

di CityDist([2,4]

insheet using "offerers.csv",
delim(";") clear

label values corpres CityNames

labe var corpres
Residence"

"Corporation

labe var corpname "Corporation Name"

labe var corpid "Corporation ID"

save offerers.dta, replace

insheet using "positions.csv",
delim(";") clear

labe var posid "Position ID"
labe var corpid "Corporate ID"

labe var corpwtime "Working Time
Required"

labe var corpquali "Qualification

Required"

labe var corpcrea "Creativity
Required"

labe var corpteam "Team Spirit
Required"

labe var corpcomm "Communication
skills Required"
labe var maxsal "Maximum Salary"

save positions.dta, replace

insheet using "seekers.csv",
delim(";") clear

capture label drop CityNames

label define CityNames 1 "Budapest"

2 "Békéscsaba" 3
"Debrecen" 4 "Eger"
"Gy&r" 6 "Kaposvar"

35

What is the distance between Békéscsaba and Eger?

Import the database of the corporates who want to

hire workers for their open positions.

Format, make variable labels and save the database

in STATA format.

Import the database of the open positions.

Format and save it.

Import the database of the job seekers.

Format, make variable labels, create value labels then

assign it, lastly save the database in STATA format.

Application 2 — Micro simulation

"Kecskemét" 8 "Miskolc" 9
"Nyiregyhaza" 10 "Pécs" 11
"Salgdétarjan" 12 "Szeged" 13
"Székesfehérvar" 14
"Szekszard" 15 "Szolnok" 16
"Szombathely" 17 "Tatabanya"
18 "Veszprém" 19
"Zalaegerszeg" 20 "Ajka" 21
"Baja" 22 "Cegléd" 23
"Dunaujvaros" 24 "Erd" 25
"Godolls" 26 "Gydngyos" 27
"Gyula" 28 "Hajduboszormény"
29 "Hodmezdévasarhely" 30
"Kazincbarcika" 31

"Kiskunfélegyhaza" 32
"Kiskunhalas" 33

"Mosonmagyardoévar" 34
"Nagykanizsa" 35 "Oroshéaza"
36 "Ozd" 37 "Papa" 38
"Sopron" 39 "Szentes" 40
"Vé.C"

label values seekres CityNames

labe var seekid "Seeker ID"

labe var seekname "Seeker Name"
labe var seekres "Seeker Residence"

labe var seektdist "Seeker Travel
Distance Wanted"

labe var seekwtime "Working Time
Wanted"

labe var seekquali "Seeker
Qualification"

labe var seekcre "Seeker Creativity"

labe var seekteam "Seeker Team
Spirit"

labe var seekcomm "Seeker
Communication Skills"

labe var minsal "Minumum Salary"

save seekers.dta, replace

Process the data, the core of the simulator

36

Application 2 — Micro simulation

noisily capture mkdir results

clear
gen str9 seekid = ""
gen int offers = 0

save "results\\findings", replace

clear
gen str9 seekid = ""
gen str9 posid = ""

save "results\\matchings", replace

insheet using
"distances of cities.csv",
delim(";") clear

mkmat budapest bkscsaba debrecen

eger gyr kaposvr kecskemt ///
miskolc nyregyhza pcs
salgtarjn szeged szkesfehrvr
szekszrd ///

szolnok szombathely

tatabnya veszprm zalaegerszeg

ajka baja ///

cegld dunajvros rd gdll
gyngys gyula hajdbszrmny
hdmezvsrhely ///

kazincbarcika kiskunflegyhza
kiskunhalas mosonmagyarvr
nagykanizsa ///

oroshza zd ppa sopron

szentes vc, matrix (CityDist)

Create a new folder where we will save the matching
tables for every corporate/position. For every
corporate we are going to create a unique folder and
add every eligible seeker.

Capture - Skip if there is an error

Noisily - do not suppress error message

Make a table which will hold every seeker and how
many offers they got.

Matching table for which position to which seeker is
assigned (the algorithm is simple: every position gets
the eligible seeker with the lowest minimum wished
salary).

Generate (town-to-town) distance matrix.

Application 2 — Micro simulation

use positions.dta, clear

merge m:1 corpid using offerers.dta
sort posid

save posANDofferers.dta, replace

count

local N positions = r(N)

scalar pos nomatch = 0
forvalues i = 1/ N positions' ({
di "1i°

quietly{

local corpname =

subinstr (corpname "i'],".","",.)
local posid = posid[1i']

local corpcrea = corpcreal 1i']
local corpteam = corpteam|[1i']
local corpcomm = corpcomm[1i']
local corpwtime = corpwtimel[i']
local corpquali = corpqualil 1i']
local maxsal = maxsall[i']

local corpres = corpres| i']

di " corpname'"

noisily capture mkdir
"results\\ corpname'"

Open positions database.

Merge positions with offerers (corp.) date in order to
have the corporation seat as well.

Sorting by position ID and save

Counting how many positions there are. We will have
to find a worker (seeker) for every one of them.

Storage for the number of positions which did not get
neither one worker.

Go through all of the positons.

Monitoring the process: where are we?

Suppress terminal output

Saving the current position's parameters into local

macros (storages).

In corporate name substitute ever dot with null
string. It is crucial because later we will make folder
with these names and dots would make problem.

Monitoring: which corp. is under process?

Create a new subfolder with the name of the
corporation. It could be that there is already a

38

Application 2 — Micro simulation

subfolder with the same name, because this may not
be the first cycle.

use seekers.dta, clear Loading the seekers' database so as to be able to
select appropriate ones.

keep if minsal< maxsal' & Filter out the eligible job seekers.
seekcre>="corpcrea' & seekcomm >=
‘corpcomm' & seekteam>= corpteam' &

seekwtime == " corpwtime'" &

seekquali == " corpquali'" &

CityDist [seekres, "corpres'] <

seektdist

count Check whether there is at least one eligible worker.
if r(N) == 0 {

scalar pos nomatch = pos nomatch + 1

}

else(If there is then continue the procedure

save "results\\tmp.dta", replace Save the results in a temporary folder, because it will

. be needed later.
outsheet using

"results\\ corpname'\\ posid'.csv", And as a csv file in the corporation's folder.

delimiter (";") replace

keep seekid minsal Compare the actual eligible seekers with the ones
who have already won a position (in the matching

g str9 posid = " posid'" table)

merge 1:1 seekid using
"results\\matchings.dta", update

keep if posid == " 'posid'" & merge Drop those seekers who are already assigned to a
=5 position or not concerned for this position.
sort minsal Keep only the seeker who has the lowest salary

requirement.
keep 1if n==1

39

Application 2 — Micro simulation

drop minsal merge
append using
"results\\matchings.dta"

save "results\\matchings.dta",
replace

use "results\\tmp.dta", clear
keep seekid

merge 1:1 seekid using
"results\\findings.dta"

replace offers = 1 if mi(offers)
replace offers = offers + 1 if

_merge == 3

drop merge

save "results\\findings.dta",
replace

use posANDofferers.dta, clear

if "i' == 10 continue, break

di "Positions which did not get
enquirer (seeker) : "

di pos nomatch

40

Extend the matching table based on the lowest salary
requirement.

Load the previously saved temporary result with the
eligible seekers.

Merge the table with the number of offers they got.

If it is the first offer of hers then change the missing
value to one.

If it is not the first then increment.

Update the table (seekers and number of offers,
respectively).

End of the else branch.

Load the table according to which we make the
search for eligible seekers.

Restriction on the number of positions to which we
are looking for seekers. Break will terminate the loop.
End of quietly.

End of for loop.

Display how many positions have no chance to be
fulfilled.

